BT

Reg.No.:

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9001

B.E. /B.Tech. DEGREE END-SEMESTER EXAMINATIONS - April / May 2023

Eighth Semester

Biotechnology

U19BTE16 – FOOD NUTRITION & HEALTH SCIENCES

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$			
Q.No.	Questions	Marks	KL	CO	
1.	Mention the various forms of malnutrition.	2	K1	CO1	
2.	Why are recommended dietary allowances set up?	2	K2	CO1	
3.	What is dietary fiber?	2	K1	CO1	
4.	List the nutrients which supply energy.	2	K2	CO1	
5.	Why is more protein food needed during pregnancy?	2	K2	CO4	
6.	Indicate the advantages of breastfeeding.	2	K1	CO5	
7.	Differentiate food allergy and food intolerance.	2	K3	CO1	
8.	Name fruit spoilage microorganisms.	2	K1	CO4	
9. 🌞	Define a balanced diet.	2	K2	CO2	
10.	Draw a nutritional chart for an underweight person.	2	K3	CO2	

PART – B

		(5	x 13 = 6	65 Ma	rks)
Q.N 11.		Questions With a neat diagram, explain the steps involved in the absorption process in GIT.	Marks 13	KL K2	CO CO1
		(OR)			
	b)	i. Explain nutrition research in India.	6	K1	CO ₁
		ii. List down the five classes of food groups. With an example, explain.	7		CO2
12.	a)	i. Enlist the objectives in planning meals. How can you ensure nutritional adequacy in meals?	8	K2	CO2
		ii. Discuss the factors influencing basal metabolic rate. (OR)	5		CO3
	b)	Classify vitamins based on their solubility. Elucidate the source, functions, and deficiency of each vitamin.	13	K1	CO2 CO5
13.	a)	i. Compare and contrast the nutritional needs of a child in the first year of life with those of an adult.	8	K1	CO3
		ii. How can parents help children to develop good eating habits?	5		CO5
		(OR)			
	b)	Elucidate the fitness parameters and explain how it is assessed.	13	K2	CO3
14.	a)	Summarize the various food-borne diseases at different stages of food processing.	13	K2	CO2 CO3
		(OR)			
	b)	i. Classify food adulterants. Explain each with an example and mention the methods to identify the same.	10	K1	CO1
		ii. What is artificial sweetener? Give an example.	3		CO2
15.	a)	i. Summarize the functions of Indian dietetic association.	6 7	K2	CO3
		ii. Describe the dietary consideration for healthy gut. (OR)	,		CO4
	b)	What is therapeutic diet? Classify and explain each with proper example.	13	K2	CO3
		PART – C			
			1 x 15 =	15Ma	rks)
Q.1	No.	Questions	Marks	KL	CO
16.		i. Explain the digestion of fat in gastrointestinal tract.	8	K4	CO3
		ii. List the benefits of fats as a nutritional source. (OR)	7		
	b)	How do you plan a diet for a patient suffering from tuberculosis?	15	K3	CO4

Reg.No.:		
----------	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9003

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS -April / May 2023

Eighth Semester

Biotechnology

U19BTE21 – CANCER BIOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$				
Q.No.	Questions	Marks	KL	CO		
1.	Define mutation with an example?	2	K1	CO1		
2.	Define tumor suppressor gene with an example?	2	K1	CO1		
3.	Define how X- ray radiation exposure lead to carcinogenesis?	2	K2	CO2		
4.	Define ROS. How it is generated?	2	K2	CO2		
5.	Write about Retroviruses with an example?	2	K1	CO2		
6.	Write about proto-oncogene with an example?	2	K1	CO1		
7.	What is meant by disruption of basement membrane?	2	K2	CO1		
8.	What is EMT?	2	K1	CO2		
9.	How radiation therapy is performed?	2	K3	CO2		
10.	List any four chemotherapeutics drugs used in cancer therapy?	2	K1	CO2		

PART – B

		(5 x	13 = 65 N	Marks))
Q.I	No.	Questions	Marks	KL	CO
11.	a)	Discuss Cell Cycle with a neat, labelled diagram and write about the positive and negative regulators of cell cycle?	7+6	K3	CO3
		(OR)			
	b)	Write a note on the role of diet as a causative factor for cancer with mechanistic examples?	6+7	K3	CO4
12.	a)	Discuss about various Physical carcinogens and explain their mechanism with examples?	5+8	K2	CO3
		(OR)			
	b)	Discuss about various Chemical carcinogens and explain their mechanism with examples?	5+8	K2	CO3
13.	a)	Write a note on Oncogenes and discuss about any one growth factor that acts as an Oncogene with mechanism?	7+6	K2	CO4
		(OR)			
	b)	Write a note on Viral induced Cancers with two examples?	6+7	K3	CO4
14.	a)	Discuss about various steps involved in metastatic cascade with a neat and labelled diagram?	7+6	K3	CO3
		(OR)			
	b)	Discuss about the role of Proteinases in tumor cell invasion with a neat and labelled diagram?	7+6	K3	CO4
15.	a)	Write a note on various therapeutic modalities for Cancer?	13	K2	CO2
		(OR)			
	b)	Discuss about different diagnostic modalities that are utilized to detect cancers?	13	K3	CO3
		PART – C			
		(1 x	15 = 15	Marks))
Q.N	Vo.	Questions	Marks	KL	CO
16.	a)	Define Signal switches with an example where in a mutation act as a signal switch between tumor suppressor and oncogene?	7+8	K5	CO4
		(OR)	0:=	T 7 4	004
	b)	Write a detail note on Immunotherapy and Personalized therapy for cancer?	8+7	K4	CO4

Reg.No.:				
----------	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9004

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – April / May 2023

Eighth Semester Biotechnology

U19BTE25 – TOTAL QUALITY MANAGEMENT

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 – Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 – Creating

PART - A

		$(10 \times 2 =$	20 Ma	ırks)
Q.No.	Questions	Marks	KL	CO
1.	Explain the Crosby contributions to Quality	2	K1	CO1
2.	What is Deming's "system of profound knowledge"?	2	K2	CO1
3.	Distinguish between 'internal customer' and 'external customer'.	2	K2	CO2
4.	Describe the three levels of quality in the Kano model of customer satisfaction?	2	K2	CO2
5.	Discuss about Types of histograms and their interpretations.	2	K2	CO1
6.	Highlight the features of 6 sigma.	2	K2	CO1
7.	Explain the cause-and-effect diagram (or) fishbone diagram.	2	K1	CO1
8.	Explain the FAILURE MODE AND EFFECT ANALYSIS (FMEA).	2	K1	CO1
9.	What is BENCH MARKING? Explain its Types.	2	K1	CO1
10.	What is ISO? How it differs from ISI standards?	2	K1	CO1

PART - B

		(5 x)	13 = 6	55 Ma	rks)
Q.No.	Questions	M	arks	KL	CO
11. a)	Explain the general duties of a quality council?		13	K2	CO2
	(OR)				
b)	State and explain the barriers to TQM implementation in an organization	1	13	K2	CO2

12.	a)	Define process capability? What is the difference between C_p as	nd 13	K2	CO2
		C_{pk} ? (OR)			
	b)	Explain the steps involved in continuous improvement process	13	K2	CO2
13.	a)	Discuss in detail about The seven traditional tools of quality	13	K2	CO3
		(OR)			
	b)	Briefly explain about the concept of six sigma	13	K2	CO3
14.	a)	Explain QFD for design of a course in business school	13	K2	CO2
		(OR)			
	b)	How do you make an FMEA chart and calculate RPN? Expla with an example?	in 13	K2	CO2
15.	a)	Explain ISO 9000 Implementation and certification process?	13	K2	CO2
		(OR)			
	b)	Explain the ISO 9001:2015 implementation and audit process?	13	K2	CO2
		PART – C			
			$(1 \times 15 = 15)$	Mark	s) .

Q.No. Questions Marks KL CO

16. A major national bank uses a five —day Kaizen approach to attack process speed and efficiency problems. A cross-functional team is selected for the event and participants are pulled off their jobs for several days at a time. The project is well-defined in the beginning because there is a no time to redefine the purpose or scope.

A sample agenda that the bank uses for the five days of kaizen implementation is given below.

Day 1 is spent looking at the process with new eyes. Participants do a "unit walk", a tour of operations affected by the problem or simulation being studied where they simulate being a work item flowing through the process. The group visits each portion of the process because there is cross-functional representation, they can hear insights from someone who works ion that area. The group creates a value stream map) a picture of the "as-is" simulation) that captures the basic process steps such as cycle times, number of steps, rework loops, queuing delays, work in progress(WIP) and transportation time.

Day 3 is designed around clarifying problems and brainstorming solutions. The team re-organizes the value stream. It creates a "should" map that depicts how the process would need to function to solve the identified problems. The outcome includes developing action plans for implementing solutions or trail simulations for the next day.

Day 4 is used to test the solutions. A simulation exercise is carried out if possible. The group quantifies the improvement if the proposed changes are implemented using estimates of reduction in travel time, queuing time, work in process, number of steps, number of forms, etc.

On day 5, the participants prepare and present their findings to the sponsor in a formal report-out session.

The bank makes this model work by having its internal consultants partner with the manager/sponsor to select problems that are extremely high priority, not only for that work area but also for the business as whole. This makes it much modest than a traditional kaizen. The teams are expected only to get through the simulation and piloting of solution ideas. The internal consultant will assist the team with full-scale implementation.

The results achieved as a result of Kaizen implementation are:

- 1. Cycle-time improvements have ranged from 30 percent faster to nearly 95 percent faster. One administrative process went from 20 minutes to 12 minutes, and a complaint resolution process dropped from 30 days to eight days.
- 2. Fiscal indicators have all been positive. One high-level project has allowed the bank to start charging for a service that previously was offered free to customers. New revenues are expected to total between USD 6 million to USD 9 million per year. Other projects have led to cost reduction or loss avoidance in terms of hundreds of thousands of dollars.

Conclusion

Kaizen events are a powerful improvement tool because people are isolated from their day-to-day responsibilities and allowed to concentrate all their creativity and time on problem solving and improvement. Companies that use Kaizen have found that they generate energy among those who work in the area being improved and produce immediate gains in productivity and quality.

16. a) Critically examine the characteristics of the bank's Kaizen event 15 K4 CO5 and Discuss the Kaizen model followed by the bank.

(OR)

b) Interpret the results achieved by the bank by this Kaizen event and 15 K5 CO5 why do you consider the Kaizen event to be powerful?

*

Reg.No.:

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9005

B.E. / B.Tech DEGREE END-SEMESTER EXAMINATIONS - May 2023

Sixth Semester

Biotechnology

U19BT620 - ENZYME ENGINEERING AND TECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 – Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 – Creating

PART – A

		(10	x 2 = 20	Mar	ks)
Q.No.	Questions		Marks	KL	CO
1.	Define enzyme activity in terms of international unit and katal.		2	K1	CO1
2.	How does the metal ion increase catalytic activity metalloenzymes?	in	2	K2	CO1
3	Write the significance of turn over number.		2	K2	CO2
4.	What is a ping-pong mechanism?		2	K1	CO2
5.	How Iodoacetamide helps in determining the inhibition mechanis	sm?	2	K2	CO3
6.	What are allosteric enzymes? Give an example.		2	K1	CO3
7.	Animal, plant, and microbes – Which one is best for enzy isolation and why?	me	2	К3	CO4
8.	How Trypsin activity was measured?		2	K1	CO4
9.	What is the role of collagen in skin aging?		2	K3	CO5
10.	State the application of xylanase in the detergent industry.		2	K2	CO5

PART – B

CO CO1
C01
}
CO2
2 CO2
2 CO3
CO3
2 CO4
CO4
2 CO5
CO5
1 2 3 1 2

PART - C

 $(1 \times 15 = 15 \text{ Marks})$

Q.No.

Questions

Marks

CO

16. a) The following results were obtained for an enzyme-catalyzed

15

K4 CO2

KL

reaction.	
Substrate concentration [S] x	Velocity v x 10 ⁹ (M/min)
4.65	

Substrate concentration [S] x 10 ⁵ (M)	Velocity v x 10 ⁹ (M/ min)
0.833	12.0
1.00	13.8 16.0
1.25	19.0
1.67	23.6
2.00	26.7
2.50	30.8
3.33	36.3
4.00	40.0
5.00	44.4
6.00	48.0
8.00	53.4
10.00	57.1
20.00	66.7

Calculate K_m and V_{max} using

- i. LB Plot
- ii. Hanes Plot
- iii. Eadie-Hofstee plot

(OR)

b) With a proper flow diagram, explain the purification steps involved 15 K3 CO5 in the extraction of intracellular protease from a bacterial source.

Reg.No.:			
-11-811	1		

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9008

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - May 2023

Sixth Semester

Biotechnology

U19BT622 – CHEMICAL REACTION ENGINEERING

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

	($10 \times 2 = 20 \text{ M}$	[arks])
Q.No.	Questions	Marks	KL	CO
1.	Define molecularity of a reaction with an example.	2	K1	CO1
2	What is meant by variable volume reaction system?	2	K1	CO1
3.	State the applications of a semi-batch reactor.	2	K1	CO2
4.	Distinguish between space time and space velocity.	2	K3	CO2
5.	Write down the design equation for Plug flow reactor.	2	K2	CO3
6.	Define Damkohler number.	2	K1	CO3
7.	Define the term 'selectivity' for a parallel reaction.	2	K1	CO4
8.	Define instantaneous fractional yield.	2	K1	CO4
9.	List the characteristics of a tracer.	2	K1	CO5
10.	What is meant by F curve and C curve?	2	K2	CO5
	PART – B			
	($5 \times 13 = 65 \text{ M}$	(arks)
Q.No.	Questions	Marks	KL	CO
11. a)	Discuss various theories explaining the temperature dependen rate constant.	cy of 13	K2	CO1

(OR)

	b)											action			3	K3	COI
			stoich	iome	etry A	$\lambda \rightarrow$	rR p	rocee	ds in	a cons	stant v	volume	n with bomb,		10	K3	
													tm in 2 pressure				
													ge in 4				
2			minut	es, i	f the								ains 40				
10	`		mole?					-4		: 4.	1 1	4-1	24.04		0	1/2	000
12.	a)											tch rea	liquid		8 5	K3 K2	CO2
													ce time		5	K2	
								-					on in a				
			mixed	l flov	v rea	ctor.			first o	rder k	inetic	S.					
				0			(OF	•							2	***	~~~
	b)			_									reactor RR, the		3	K3	CO2
													termine				
			the sp														
													d phase a data is				
													or each		10		
			batch	for t	he co	ncer							ol/lit to				
		CA	$C_{Af} =$	0.3 r	nol/li	it.											
		mole/lit	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0				
		-r _A (mol/lit	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045	0.042				
		.min)												(4)			
13.	a)	Assumi	_			_									13	K3	CO ₃
		the size	•										_				
													netry of termine				
		the requ							cotoa	Storer	1101110	uj, de					
							(OF										
	b)	Derive	an ec	uatio	on th	at re	lates	con	versio	n and	l spac	e time	e for N		13	K3	CO3
		number	of eq	ual-s	ize C	STR	s coi	nnecte	ed in s	series.							
14.	a)	For a li													13	K5	CO4
		A + B -	→ R +				$= k_1$	$C_A^{1.5}$	$C_{B}^{0.3}$	3							
					lt .	dt											
		is accor	-	-						3							
		A + B -	73+		<u>Cs</u> = It	dt dt	— K2	CA	. C B								
		What co	ontact				react	or tvr	e) wa	ould v	OU SU	ggest	to these				
								71		1	1	00	0				

reactions to minimize the concentration of undesired products? (OR)

ł	b)	$k_1 = k_2$	13	K3	CO4
		For an irreversible first order series reaction $A \rightarrow R \rightarrow S$, derive an			
		expression for the maximum concentration of intermediate product \boldsymbol{R}			
		(desired) and the time at which it occurs in a plug flow reactor.			
15. a	a)	i. Derive the expression for E(t) for the ideal CSTR. Consider	3	K3	CO5
		pulse tracer analysis.			
		ii. The data given below represent the continuous response to a pulse input into a closed vessel, which is to be used as a	10	K5	
		chemical reactor. Calculate the mean residence time of fluid			
		in the vessel and tabulate and construct C & E curve.			
		t, min 0 5 10 15 20 25 30 35			
		Cpulse, g/L 0 3 5 5 4 2 1 0			
		(OR)			
b	b)	i. Explain the concept of RTD in reactor design.	5	K2	CO5
		ii. Derive the equation to find (1) mean residence time (2)	8	K3	
		conversion by the use of tracer information.			
		PART - C			
			5 = 15M	arks)	
Q.No.		Questions	Marks	KL	CO
16. a)		i. Discuss the graphical method of identifying the best	10	KI K3	CO3
10. 4)	,	arrangement of two unequal sized stirred tank reactors	10	KJ	COS
		connected in series for the given conversion and reaction order.			
		ii. Write short notes on membrane reactors.	5	K2	CO3
			3	112	005
		(OR)			
b)		iscuss in detail the Quantitative discussion about Product	15	K3	CO4
	D	istribution for a parallel reaction of the type:			
		$A \xrightarrow{k_1} R$ (desired)			
		k_2			
		A S (undesired)			

Dec No				
Reg.No.:				

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9006

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – May 2023

Sixth Semester

Biotechnology

U19BT621 – PROTEIN ENGINEERING

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 2)$	0 Mar	ks)
Q.No.	Questions	Marks	KL	CO
1.	What is the role of covalent bonds in protein structure?	2	K2	CO1
2.	List the types of amino acids.	2	K1	CO1
3.	What are secondary structure of proteins?	2	K1	CO2
4.	Name two methods for prediction of structure binding sites of protein.	2	K2	CO2
5.	What are domains in tertiary structure?	2	K2	CO3
6.	What is the most common quaternary structure of proteins?	2	K1	CO3
7.	Name any two DNA binding proteins and its functions.	2	K2	CO4
8.	What is the role of membrane proteins?	2	K2	CO4
9.	Define proteomics.	2	K1	CO5
10.	Give the importance of protein arrays in proteomic studies.	2	K2	CO5

PART - B

		IAKI - D			
0	NI.		13 = 65 N		/
-	No.	Questions	Marks	KL	CO
11.	a)	Write in detail about the physical, chemical and molecular properties	13	K2	CO1
		of amino acids.			
		(OR)			
	b)	Discuss about various bonds that are involved in the protein	13	K2	CO1
		formation.			
12.	a)	Explain about the protein sequencing and its structure interpretation	13	K3	CO2
		of protein.			
		(OR)			
	b)	Discuss in detail about super secondary structure and the methods	13	K3	CO2
		used for its prediction.			
13.	a)	Write about the methods to identify the 3D structure of proteins.	13	K3	CO3
		(OR)			
	b)	Discuss in detail about the Ramachandran plot and its significance.	13	K2	CO3
14.	a)	Explain with diagram, the leucine zipper and its importance.	13	K2	CO4
		(OR)			
	b)	Explain the role of photosynthetic reaction centers in plants.	13	K3	CO4
15.	a)	Explain the phosphoproteome analysis and techniques involved.	13	K3	CO5
		(OR)			
	b)	How are yeast hybrid systems are used to study the protein-protein	13	K2	CO5
		interactions.			
		PART – C			
		(1 v	15 = 15	Marks)
0.	ī.	· ·			,
Q.N 16.		Questions Protein engineering using directed evolution is a common strategy	Marks 15	KL K3	CO CO3
10.	u)	for improving the catalytic properties of enzymes. With examples,	15	KJ	COS
		describe how directed evolution may be applied and comment on			
		its advantages and limitations.			
		(OR)			
	b)	How is helix turn helix motif play a vital role in DNA binding	15	K3	CO3
		explain with a suitable example?			

Reg.No.:

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9015

B.E. / B.Tech DEGREE END-SEMESTER EXAMINATIONS - May 2023

Sixth Semester

Biotechnology

U19BT619 - PLANT AND ANIMAL BIOTECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART – A

		(10 x	2 = 20 N	A arks	3)
Q.No.	Questions		Marks	KL	CO
1.	Write a note on the sterilization of the culture medium use tissue culture.	ed in plant	2	K1	CO1
2.	Brief on protoplast culture.		2	K1	CO1
3.	Differentiate between direct and indirect gene transfer met one suitable example for each.	hods with	2	K2	CO2
4.	Distinguish between co-integrative and binary vectors.		2	K2	CO2
5.	Highlight the difference between defined and serum free min animal cell culture.	nedia used	2	K2	CO3
6.	Write a note on the cryopreservation of animal cells.		2	K2	CO3
7.	List any TWO viral methods of gene transfer in animals.		2 "	K1	CO4
8.	What is the difference between adenovirus vector an associated virus vector?	d adeno-	2	K2	CO4
9,	Write a short note on Cry gene in Bacillus thuringiensis.		2	K2	CO5
10.	Define roundup ready crops. Give two examples.		2	K2	CO5

PART - B

 $(5 \times 13 = 65 \text{ Marks})$ O.No. **Ouestions** Marks KL. CO 11. a) Compare and Contrast organogenesis and somatic embryogenesis and 13 K2 CO₁ its direct and indirect approaches. b) i. Exemplify the methods of Micro propagation and its brief its 8 K2 CO₁ applications. ii. Portray the stages of micro propagation with a schematic 5 representation. 12. Illustrate the Agrobacterium mediated gene transfer method and 13 K2 CO₂ mention its applications. (OR) b) i. Demonstrate the electroporation method as a direct method of 8 K2 CO₂ gene transfer. 5 Mention its advantages and disadvantages. 13. Elaborate the role of stem cells in animal cell culture and brief its 13 K2 CO₃ applications. (OR) b) Narrate the steps involved in the development of a primary cell line. 13 CO₃ 14. Outline the biology and construction of lentivirus and herpes virus 13 K3 CO₄ vectors with applications. (OR) b) With a suitable example each, describe the stable and transient 13 K2 CO₄ methods of gene transfer along with its pros and cons. 15. Paraphraze the methodology of producing insect resistance crops and a) 13 K2 CO₅ describe the significance of insect resistance crops. (OR) b) What are probiotics? Describe ideal characteristics, mode of action 13 K2 CO₅ and uses of probiotics with examples. PART - C $(1 \times 15 = 15 \text{ Marks})$ Q.No. Questions Marks KL CO 16. a) With an example case study, explain the large scale production of a 15 K4 CO₁ secondary metabolite using plant cell culture in a suitable bioreactor. (OR) Suggest the suitable ways to increase the lactation yield of cow by 15 K4 CO₅ manipulating the rumen microbial digestive system.

Reg.No.:				

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 2004

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - May 2023

Fourth Semester

Biotechnology

U19MA408 – PROBABILITY AND STATISTICS

(Regulation 2019)

(Common to Biomedical Engineering)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

	(10×2)	= 20 M	arks)	
Q.No.	Questions	Marks	KL	CO
1.	Given that the probability density function of a random variable X is $f(x) = kx$, $0 < x < 1$; $f(x) = 0$, elsewhere. Find the value of k .	2	K2	CO1
2.	Prove that Moment Generating Function for $f(x) = \frac{1}{2^x}$, $x > 0$	2	K2	CO1
3.	10 coins are thrown simultaneously. Find the probability of getting atleast 7 heads.	2	K3	CO2
4.	Find the mean of exponential distribution.	2	K1	CO2
5.	Find the marginal distribution of x for $f(x, y) = x + y$, $0 < (x, y) < 1$.	2	K3	CO3
6.	State the Central Limit Theorem	2	K1	CO3
7.	State the properties of good estimators.	2	K1	CO4
8.	State the Confidence intervals for parameter in one sample from normal population.	2	K1	CO4
9.	Define Critical region.	2	K1	CO5
10.	Find 95 percent and 99 percent fiducial limit for a random sample of 16 values with $\bar{x} = 41.5$ and $s = 3$.	2	K3	CO5

PART - B

							1	AKI	– Б			(F 1 C -	- 00 Mari	l_ s	
0.1	. 7						_	il .				$(5 \times 16 =$		-	00
Q.1 11.	No. a)	i.	A R	andor	n vari	able		uestions the p		lity fun	ction g	iven below	Marks 8	KL K2	СО
		X	0	1	2	3	4	5	6	7	8	1			
		P(x)	a	3a	5a	7a	9a	11a	13a	15a	17a	•			
		Find													
		1 1110													
							_	he valı P(X <							CO1
							_	•	-	X > 0	-				
					_		_			ion fund					
		ii.							-	_	-	's inequality	8	K3	
			to III	na io	wer bo	ouna	_	_	100 10	140 siz	xes.		O	KJ	
	b)	i.	Find	the I	Mome	nt or	•	DR) ting fu	nction	of the	randon	n variable X	10	K2	
	U)	1.	1 1110	tile i	VIOIIIC	in go	Jiici a						10	112	
								$P(\lambda$	$\zeta = x$	$=\begin{cases} x \\ 2 - \end{cases}$	r 1/	r < 2			
				-	babil	•)11							CO1
		ii.									probab	ility density	6	K3	
				_				(2), 0					Ü	115	
10								an and				0/ 1.0 /*	0	TZO	
12.	a)	i.			_	_		_				% defective	8	K2	
						-		ity tha	t the f	irst dete	ective of	occurs in the			000
		×			m ins	_									CO2
		••	-		e insp			.111		·	1				
		ii.						_			-	eague in the	0	IZ 1	
								-	ributed	i betwe	een 45.	2 hours and	8	K1	
					inclu			•							
			,					iation that t	he du	ration o	of game	es for a team			
			-		_					d 510 ł	_	os for a team			
								OR)							
	b)	i.										ind of radial	8	K2	
			-						_	-		distribution			
					1 4000) km	. Find	the p	robabi	lity tha	t one o	of these tyres			
			will		2000	km									CO ₂
			,		3000										
		ii.	,				sseml	ole a c	ar in a	certair	n plant	is a random			
			varia	ıble h	aving	a no	rmal	distrib	ution	of 20 h	ours an	d a standard	8	K1	
			devi	ation	of 2 l	nour	s. Wł	nat is t	he pro	babilit	y that	a car can be			
			assei	mbled	d at th	is pla	ant in	a peri	od of 1	ime					
			1) le	ss tha	ın 19.5	5 hou	ırs?								
			2) be	etwee	n 20 a	nd 2	2 hou	ırs?							
13.	a)	i.	Two	ranc	dom v	varia	ble 2	X and	Y h	ave the	e joint	probability	8	K2	CO3
			dens	ity fu	nctior	ı f(x	, y) =	= {8xy	0 < 0	x < y < erwise	< 1				
				J				(0	, oth	erwise	?				

2) Are X and Y are independent? A random sample of size 100 is taken from a population whose mean is 60 and variance is 400. Using central limit theorem, 8 K3 with what probability can we assert that the mean of sample will not differ from $\mu = 60$ by more than 4? Two random variable X and Y have the joint probability b) i. K2density function $f(x) = k(4 - x - y), 0 \le x \le 2$ $y \le 2$ Find 'k', Marginal density functions of X and Y and CO₃ conditional density functions of f(x/y), f(y/x). Find the Mean values of X and Y, correlation coefficient given ii. 8 K3 that the variance of X is 9 and the two lines regressions 8x -10y + 66 = 0, 40x - 18y - 214 = 0. 14. a) i. Show that for random sampling from Cauchy- population with K2 $f(x;\mu) = \frac{1}{\pi} \frac{1}{1 + (x - \mu)^2}, -\infty \le x \le \infty$ sample mean is not a consistent estimator for the population CO₄ mean. ii. Prove that for a random sample of size n taken from an infinite K3 population, $s^2 = \frac{\sum (x_i - \bar{x})^2}{1}$ is not unbiased estimator of σ^2 . Find an unbiased estimate of σ^2 . For the random sampling from normal population $N(\mu, \sigma^2)$, find the Maximum likelihood estimators for μ when σ^2 is known i. 16 K2 σ^2 when μ is known ii. the simultaneous estimation of μ and σ^2 iii. CO₄ 15. a) Two horses A and B were tested according to the time i. (in seconds) to run a particular track with the following results. 8 K2 Test whether the two horses have the same running capacity. Horse A 28 30 32 33 33 29 34 CO₅ 29 30 30 24 27 Horse B 27 ii. Theory predicts that the proportion of beans in 4 groups A,B,C,D should be 9:3:3:1. In an experiment among 1600 K3 8 beans, the numbers in the 4 groups were 882,313,287,118. Does the experiment support the theory? (OR) The nicotine contents in milligrams in two samples of tobacco were CO₅ 16 K3 found to be as follows: Sample I: 24, 27, 26, 21, and 25 Sample II: 27, 30, 28, 31, 22, 36.

1) Find Marginal and conditional density functions of X and Y.

Can it be said that two samples come from same normal population.

Reg.No.:					
----------	--	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9007

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - May 2023

Fourth Semester

Biotechnology

U19BT407 - BIOPROCESS ENGINEERING & TECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		(10×2)	= 20	Marks)
Q.No.	Questions	Marks	KL	CO
1.	Sketch the design of Fluidized Bed Reactor,	2	K1	CO1
2.	Mention the significance of simplex design.	2	K2	CO1
3.	Define X ₉₀ concept.	2	K1	CO2
4,	Compare the merits and demerits of batch sterilization.	2	K2	CO2
5.	Air is sparged at 3 LPM to a fermenter having D _T =60 cm. Calculate the superficial gas velocity.	2	K3	CO3
6.	Justify how the bubble size affects the O2 transfer in fermentation?	2	K2	CO3
7.	Express the kinetic equation representing the product formation.	2	K2	CO4
8.	Infer how do compartmental models are useful in Bioprocess engineering?	2	K2	CO4
9.	Classify the types of interactions occur in mixed cultures.	2	K2	CO5
10.	Write the Weisz's Criteria required to determine the influence of mass transfer on reaction rate.	2	K2	CO5

PART – B

 $(5 \times 13 = 65 \text{ Marks})$

Q.N 11.		Questions i. Design a 5 L fermenter with appropriate measurements. ii. Describe the design considerations of Packed Bed Reactor with suitable diagram. (OR)	Marks 6 7	KL K2	CO CO1
	b)	Discuss about the medium optimization by Response Surface Methodology (RSM) and also mention the advantages of RSM over Plackett Burman (PB) method.	13	K2	CO1
12.	a)	Derive the necessary equations employed for continuous sterilizer design.	13	K2	CO2
	b)	Medium at a flow rate of 5 m ³ h ⁻¹ is to be sterilized by heat exchange type continuous sterilizer. The liquid contains bacterial spores at a concentration of 5 x 10 ¹² m ⁻³ ; the Activation energy and Arrhenius constant for thermal destruction of these contaminants are 283 kJ gmol ⁻¹ and 5.7 x 10 ³⁹ h ⁻¹ , respectively. A contamination risk of one organisms surviving every 30 days operation is considered acceptable. The sterilizer pipe has an inner diameter of 0.1 m; the length of the holding section is 42 m. The Dispersion coefficient and Damkohler number are 25 m ² h ⁻¹ and 45 respectively. Determine the following i. Sterilization Criterion, ii. Flow Velocity, iii. Peclet Number and	13	K3	CO2
13.	a) ,	microbial cells in the fermenter? Comment on the resistances offered at each step. ii. The value of K _L a is 20 hr-1 has been determined by a fermenter at its maximum agitated speed and air is being sparged at 0.5 L gas/L min. E.coli with specific oxygen	3		
		demand of 15 mM/g hr is to be cultured and critical dissolved oxygen concentration is 0.5 mg/L. The solubility of oxygen from air in the fermentation broth is 7.3 mg/L at 30°C. iii. What maximum concentration of E. coli can be sustained in the fermenter under aerobic condition?	4	K3	CO3
		iv. What cell concentration should be maintained if pure oxygen was used to sparge the reactor?	3		
		(OR)			
	b)	 i. List out the factors which affect K_La in fermentation process. ii. Consider the scale-up of a fermentation from a 1 L to 1000 L vessel. The small fermenter has an aspect ratio of 4. The 	5	K3	CO3
		impeller diameter is 30% of the tank diameter. Agitator speed	8		

		the dimensions of the large fermenter and agitator speed for: 1. Constant <i>P/V</i> , 2. Constant impeller tip speed and 3. Constant Reynolds number.			
14.	a)	 i. Derive the expressions for unstructured kinetic model representing the relation between μ and S. 	8	K2	CO4
		ii. Explain about single cell model. (OR)	5		
	b)	i. Predict the fraction plasmid containing cells in a batch culture under the following circumstances. Cells are maintained at constant, maximal growth rate of 0.663 hr ⁻¹ during scale up from shake flask through seed fermenters into production fermenters. The total time for this process is 40 hrs. Assume that the inoculum for shake flask was 100% plasmid containing cells. It is known that the growth rate for a plasmid free cell is 0.95 hr ⁻¹ . The value of p is 0.009.	6	K3	CO4
		ii. Derive the mathematical expression for Plasmid stability model.	7		
15.	a)	State the Fick's law of diffusion and explain in detail about the diffusional limitations in immobilized cell. (OR)	13	K2	CO5
	b)	Discuss in detail about the design considerations for immobilized enzyme reactors.	13	K2	CO5
		PART – C			
					Marks)
Q.N			Marks	KL	CO
16.	a)	A person is working in a Biotech company and the task is to convert the soluble cellulose into glucose using <i>Neurospora crassa</i> . These cells are naturally form a self-immobilized aggregates and having average diameter 6 mm. The effective diffusivity of substrate in the aggregates is $1.85 \times 10^{-9} \text{ m}^2/\text{s}$. In a fixed-bed reactor, the cellulose conversion rate is at a bulk substrate concentration of $5 \times 10^{-3} \text{ kg/m}^3$ is $9.1 \times 10^{-5} \text{ kg/m}^3$ s of biomass. The liquid- solid mass transfer coefficient is $5 \times 10^{-5} \text{ m/s}$.	15	K3	CO3
		 i. Is the above affected by external mass transfer? ii. What is the external effectiveness factor? What reaction rate would be observed if both internal and external mass transfer resistances were eliminated? (OR) 			
	b)	Brief about the industrial utilization of mixed cultures for Solid-state fermentation.	15	K3	CO5

Reg.No.:	
----------	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9011

B.E. / B.Tech DEGREE END-SEMESTER EXAMINATIONS - May 2023

Fourth Semester

Biotechnology

U19BT408 – THERMODYNAMICS FOR BIOTECHNOLOGISTS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART – A

		(10 x 2	2 = 20 N	Marks	s)
Q.No.	Questions		Marks	KL	CO
1.	Define Helmholtz energy.		2	K 1	CO1
2.	How Clausius inequality helps in determine reversible process?		2	K2	CO1
3.	What is activity and activity coefficient?		2	K1	CO2
4.	State Lewis-Randall rule. Give its expression.		2	K2	CO2
5.	Write the relationship between C _p and C _v .		2	K2	CO3
6.	What is Hess's law?		2	K1	CO3
7.	What is Clausius-Clapeyron equation?		2	K1	CO4
8.	Define-volume expansivity and isothermal compressibility.		2	K1	CO4
9.	Infer endergonic reaction with an example.		2	K2	CO5
10.	Write short note on energy coupling process in bioenergetics.		2	K1	CO5
	DADT D				

PART - B

		(5 x 13 =	= 65 Ma	rks)	
Q.No.		Questions	Marks	KĹ	CO
11. a)	i.	A paddle-wheel is employed in rigid container for stirring a hot	7	K4	CO1
		fluid to be cooled. The internal energy of the hot fluid is 1000			
		kJ. During the cooling process, the fluid losses 600 kJ of heat.			
		For this process, the work done by the paddle-wheel on the fluid			
		is 100 kJ. Calculate the final internal energy of the fluid.			
	ii.	Explain the laws of thermodynamics with examples.	6	K1	CO1

			(511)			
	b)	i.	Deduce the thermodynamic relationships for non-flow process with its P-V diagram.	8	K2	CO1
		ii.	Explain the spontaneous and non-spontaneous reactions in higher energy bonds and compounds.	5		
12.	a)	i.	Derive Gibbs-Duhem Equation.	7	K2	CO2
		ii.	Estimate the fugacity of a gaseous mixture consisting of 30% component 1 and 70% component 2 by mole, given that at 100°C and 50 bar, the fugacity coefficient of components 1 and 2 are 0.7 and 0.85 respectively.	6	K3	CO2
			(OR)			
	b)	i.	Prove that $\mu_i = \left(\frac{\partial U^t}{\partial n_i}\right)_{S,V,n_{j\neq i}}$	7	K2	
Y			Trove that $\mu_i = \left(\partial_{n_i}\right)_{S,V,n_{j\neq i}}$			CO2
		ii.	The azeotrope of the ethanol-benzene system has a composition		***	
			of 44.8% (mol) ethanol with a boiling point of 341.4 K at 101.3kpa. At this temperature the vapour pressure benzene is	6	K3	
			68.9 kpa and the vapour pressure of ethanol is 67.4 kpa. What			
			are activity coefficients in a solution containing 10% alcohol?			
13.	a)	i.	Explain effect of temperature on heat of reaction using Kirchhoff equation.	7	K3	CO3
		ii.	The following reactions represents transformation of glucose in	6		
			an organism:			
			$C_6H_{12}O_6 (s) \rightarrow 2C_2H_5OH (l) + 2CO_2 (g)$ $C_6H_{12}O_6 (s) + 6O_2 (g) \rightarrow 6CO_2 + 6H_2O (l)$			
		Calcu	late the values of ΔH_{298}^0 for the above biochemical reaction.			
			identify which of these reactions supplies more energy to the			
		organi Data:	ISIII.			
			of formation of $C_6H_{12}O_6 = -1273.0 \text{ kJ/mol}$			
			of formation of $C_2H_5OH = -277.6 \text{ kJ/mol}$ of formation of $CO_2 = -393.5 \text{ kJ/mol}$			
			of formation of H_2O = -285 kJ/mol			
			(OR)			
	b)	i.	Mercury has a density of $13.69 \times 10^3 \text{ kg/m}^3$ in the liquid state	5	K4	CO3
			and 14.193×10^3 kg/m ³ in the solid state, both measured at the			
			melting point of 234.33 K at 1 bar. If the heat of fusion of mercury is 9.7876 kJ/kg, what is the melting point of mercury at			
			10 bar?			
		ii.	A boiler is fired with a high-grade fuel oil (consisting only of hydrocarbons) having a standard heat of combustion of -43,515	o		
			J·g ⁻¹ at 25°C with CO ₂ (g) and H ₂ O (l) as products. The	8		
			- 0/ - 1			

temperature of the fuel and air entering the combustion chamber is 25°C. The air is assumed dry. The flue gases leave at 300°C, and their average analysis (on a dry basis) is 11.2% CO₂, 0.4% CO, 6.2% O₂, and 82.2% N₂. Calculate the fraction of the heat of combustion of the oil that is transferred as heat to the boiler.

14. a) i. Derive Maxwell equation and also mention the application. 7 K3

CO4

6

K3

ii. It is desired to produce a 1 kg ice block from water in a freezer box of refrigerator at 273 K while the temperature of the environment is 295 K. Given that the latent heat of fusion of ice at 273 K is 335 KJ/kg. Determine the minimum work requirement and the amount of heat released to the surroundings.

(OR)

- b) i. Define Joule-Thomson coefficient and explain how it could be 8 K3 CO4 used for determining heat capacity of gases.
 - ii. Prove that $TdS = C_V dT + \frac{T\beta}{\alpha} dV$ 5 K3
- 15. a) i. What is bioenergetics? Explain the energetics of metabolic 7 K1 CO5 pathway with a suitable example.
 - ii. Discuss in detail the oxygen requirement and heat generation in aerobic growth.

(OR)

- b) i. Explain the thermodynamics of protein folding. 6 K1 CO5 ii. Discuss the oxidation-reduction process in the catabolism of 7 K2
 - glucose in the biological cell.

PART - C

Q.No. Questions (1 x 15 = 15 Marks)

Q.No. Questions Marks KL CO

16. a) i. At 200 K, the compressibility factor of oxygen varies with 8 K3 CO2

pressure as give below. Evaluate the fugacity of oxygen at this temperature and 100 bar.

P, bar	Z
1.00	0.99701
4.00	0.98796
7.00	0.97880
10.00	0.96956
40.00	0.8734
70.00	0.7764
100.00	0.6871

ii. The activity coefficient of *n*-propyl alcohol in a mixture of water (A) and alcohol (B) at 298 K referred to the pure liquid standard is given below:

K3

CO₅

 x_B
 0
 0.01
 0.02
 0.05
 0.10
 0.20

 γ_B
 12.5
 12.3
 11.6
 9.92
 6.05
 3.12

Find γ_A in solution containing 10 percent (mole) *n*-propyl alcohol.

(OR)

- b) i. Using Gibbs free energy explain the endergonic and exergonic 7 K3 reactions in photosynthesis and cellular respiration.
 - ii. It is desired to cool a variety of aromatic oil in a heat exchanger from 515 K to 315 K at a rate of 4750 kg/h. The temperature of the cooling water is 290 K and it is supplied at a rate of 9500 kg/h. The average specific heat capacities of the aromatic oil and water is 3.2 kJ/kg-K and 4.185 kJ/kg-K respectively. Determine the entropy change of the process and check whether the process is reversible or irreversible.

Reg.No.:	-				
----------	---	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9016

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - May 2023

Fourth Semester

Biotechnology

U19BT410 - BIOINSTRUMENTATION

(Regulation 2019)

Time: Three Hours

Q.No.

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART – A

	(10	$0 \times 2 = 20 \text{ Marks}$			
Q.No.	Questions	Marks	KL	CO	
1.	What is electromagnetic radiation? Give the radiation diagram with wavelength.	2	K1	CO1	
2.	What are the sources of noise?	2	K1	CO1	
3.	Write the ideal characteristics of light source of spectroscopic methods.	2	K2	CO2	
4.	Define beer's law.	2	K1	CO2	
5.	What is quasistatic thermogravimetry?	2	K1	CO3	
6.	How the absorption process takes place X-ray?	2	K2	CO3	
7.	List out the application of HPLC.	2	K1	CO4	
8.	Differentiate ion exchange from size exclusion chromatography.	2	K2	CO4	
9.	Distinguish between Ion selective and Molecular selective electrodes.	2	K2	CO5	
10.	Write a short on TEM.	2	K1	CO5	

PART - B

Questions

(5 x 13 = 65 Marks)

Marks KL CO

Explain 13 K2 CO1

1. a) A transducer can convert one form energy into another form. Explain in which component of the spectrophotometer can do this process of conversion.

(OR)

	b)	Describe the properties of Wave.	13	K 1	CO1
12.	a)	In combination with mapping (or imaging), it is possible to generate	13	K3	CO2
		images based on the sample's spectrum. Illustrate the type of			
		spectroscopy can be used to generate images with neat diagram.			
	b)	(OR) Describe the assential commonants of LIV. Visible anestrophotometer	13	K1	CO2
	b)	Describe the essential components of UV- Visible spectrophotometer. Draw a diagrammatic sketch and explain the functions and working of each unit.	13	KI	CO2
13.	a)	A comprehensive physiochemical, stability, purity of zinc chloride is determined. Which method is used to analyze zinc chloride? Explain	13	K4	CO3
	125	the method with diagram.			
		(OR)			
	b)	What is X-ray diffraction? How XRD are used to determine the crystal structure?	13	K2	CO3
14.	a)	Deliberate the working principle and applications of HPLC with neat sketch.	13	K1	CO4
		(OR)			
	b)	Volatile mixtures are separated by physical separation process. What method is used to separate volatile mixture? Explain the method with neat diagram.	13	K3	CO4
15.	a)	Define Voltammetry. Write notes on Pulsed and Cyclic Voltammetry.	13	K1	CO5
		(OR)			
	b)	Explain with a neat diagram the working principle and application of AFM.	13	K1	CO5
		PART – C			
			15 = 15N	(Jarks	
Q.N	Io	Questions	Marks	KL	CO
16.		What method is used to analyze the amount of hemoglobin present in	15	K4	CO2
à		the given blood sample? Explain the method with neat diagram. (OR)			
	b)	Protein is isolated from mammalian cell through sedimentation of intracellular membranes and it is precipitated using 70% of ammonium sulphate saturated. Then it is centrifuged at 10,000 rpm. In order to separate protein from the saturated solution and to identify the size of the protein which method is used. Elaborate the method with	15	K4	CO4
		neat diagram with its advantages.			

Reg.No.:								
----------	--	--	--	--	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9014

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - May 2023

Fourth Semester

Biotechnology

U19BT409 – MOLECULAR BIOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART – A

		$(10 \times 2 = 20 \text{ Marks})$			
Q.No.	Questions	Marks	KL	CO	
1.	What are the properties of DNA and RNA?	2	K2	CO1	
2.	Define repetitive DNA.	2	K1	CO1	
3.	What is Okazaki fragment?	2	K1	CO2	
4.	List out certain inhibitors of DNA replication.	2	K2	CO2	
5.	Mention any four main differences between prokaryotic and eukaryotic Transcription.	2	K2	CO3	
6.	Define RNA Editing.	2,	K1	CO3	
7.	Write short notes on start and stop codons.	2	K1	CO4	
8.	Give any two inhibitors of protein synthesis in eukaryotes along with its action.	2	K2	CO4	
9.	Why lac operon switches off in the absence of Lactose in <i>E.coli</i> ?	2	K2	CO5	
10.	Differentiate classical sequencing from automated sequencing.	2	K2	CO5	

PART – B

		(5 >	13 = 65	Mark	s)
Q.1	No.	Questions	Marks	KL	CO
11.	a)	Give an account on different forms of DNA and describe the Watson & Crick model of DNA in detail.	13	K1	CO1
		(OR)			
	b)	Explain in detail the prokaryotic genome organization.	13	K2	CO1
12.	a)	Describe the sequence of events during DNA replication in eukaryotes and explain the role of various enzymes.	13	K2	CO2
		(OR)			
	b)	Interpret the principle behind PCR and its application in diagnosis of Autoimmune disease.	13	K3	CO2
13.	a)	With the help of suitable diagram, describe the mechanism of transcription in Eukaryotes.	13	K2	CO3
		(OR)			
	b)	Discuss the concept of 5'Capping, Polyadenylation and RNA Splicing with neat diagram.	13	K2	CO3
14.	a)	Highlight the steps involved in the translation of prokaryotes.	13	K2	CO4
		(OR)			
	b)	Write an essay on the types and structure of RNA's.	13	K1	CO4
15.	a)	Summarize eukaryotic gene regulation with suitable diagram.	13	K2	CO5
		(OR)			
	b)	Illustrate the regulation of the tryptophan operon in E. coli.	13	K2	CO5
		PART – C			
		(1)	x 15 = 15	Mark	3)
O N	Γ.				,
Q.N	10.	Questions	Marks	KL	СО
16.	a)	Elucidate Genetic code and explain the degeneracy through Wobble hypothesis.	15	K4	CO4
	b)	(OR) Lac operon is highly regulated. How? and give its implication in the generation of recombinant proteins.	15	K4	CO5